Strain Induced Vortex Core Switching in Planar Magnetostrictive Nanostructures

As part of a collaboration with Diamond Light Source, The University of Nottingham and the University of York this open access article at Physical Review Letters demonstrates the possibility of low energy reversal of magnetic vortex core. The work, lead by Dr Stuart Cavill (The University of York) shows that by applying a time-varying strain to a ferroelectric layer that induces a strain in a magnetostrictive magnetic layer (Galfenol), vortex core dynamics are stimulated. The flux closure state is topologically symmetric and cannot be moved by simply applying a time-varying strain, therefore the symmetry must be broken. We achieved this by applying a gradient to the strain which moves one domain more than another in the vortex alternately. If the strain gradient is large enough the precession of the vortex core can be driven to force the vortex to reverse. Below is a short movie demonstrating the process.

The work was published on the 7th of August 2015 in Physical Review Letters as under the open access under a creative commons license. This was made available through the York open access fund. The work would have not been possible without the funding of the European Framework 7 project (FemtoSpin), the EPSRC, Diamond Light Source and industrial funding from Seagate Technology.