Laser Induced Magnetization Reversal for Detection in Optical Interconnects

The use of optical interconnects has become a front runner to replace more traditional (usually Cu based) electrical interconnects in many modern devices. One of the major drawbacks of optical interconnects is overcoming the need for photodetectors and (power hungry) amplifiers at the receiver. Such detection is in most cases performed by CMOS circuits or direct band gap semiconductors. As part of a collaboration lead by engineers at Purdue University, IN, USA a new use of ultrafast heat induced switching, originally published in Nature Communications, has been proposed as a means of using optical signals directly with standard CMOS circuits.

Schematic view of focusing of the laser beam on the detecting MTJ.
Schematic view of focusing of the laser beam on the detecting MTJ.

 

The data is transmitted using femtosecond laser pulses that induce magnetisation reversal in a magnetic tunnel junction (MTJ) in the receiver. The proposed scheme offers almost a 40% energy improvement over current technology and speeds of up to 5 GBits/sec for a single link. The preprint of the article can be found on arXiv (or downloaded from this link).